
Oltre HybridCache: FusionCache

Jody Donetti

DotNetConf Liguria 2025



Jody Donetti

Code + R&D

Faccio cose (principalmente) sul web da circa 30 anni.

Ho avuto a che fare con la maggior parte dei tipi di cache: memory, 

distributed, hybrid, HTTP, offline e CDN.

Ho creato FusionCache, una hybrid cache .NET free + OSS.

Google OSS Award

Microsoft MVP Award



Hybrid Caching: Dove Eravamo Rimasti



Hybrid Caching: Dove Eravamo Rimasti

Quindi, ricapitolando.

Tramite una cache ibrida possiamo ottenere il meglio di entrambi i mondi:

caching in memoria

caching distribuito

Per la parte in memoria abbiamo L1 (primo livello).

Per la parte distribuita abbiamo L2 (secondo livello).



Hybrid Caching: Dove Eravamo Rimasti

Non siamo obbligati ad usare 2 livelli, possiamo usarne anche solo uno in memoria (L1):



Hybrid Caching: Dove Eravamo Rimasti

E in qualunque momento abilitare, anche dinamicamente, il livello distribuito (L2):



Hybrid Caching: Dove Eravamo Rimasti

Il tutto senza cambiare il nostro codice dovunque, grazie ad una API unificata:



Hybrid Caching: Dove Eravamo Rimasti

Potremmo poi dover scalare orizzontalmente, con scenari multi-nodo (L1 multiple):



Hybrid Caching: Dove Eravamo Rimasti

In tal caso possiamo semplicemente aggiungere un backplane:



Hybrid Caching: Dove Eravamo Rimasti

Così facendo la coerenza verrà gestita automaticamente tramite notifiche distribuite.

E, di nuovo, non dovremmo cambiare il nostro codice dovunque.

Not bad.



Hybrid Caching: Dove Eravamo Rimasti

Quali librerie possiamo usare?

CacheTower (multi-level)

github.com/TurnerSoftware/CacheTower

CacheManager (multi-level)

github.com/MichaCo/CacheManager

EasyCaching (multi-level)

github.com/dotnetcore/EasyCaching

FusionCache (hybrid)

github.com/ZiggyCreatures/FusionCache

Microsoft HybridCache (hybrid)



Hybrid Caching: Dove Eravamo Rimasti

Quali librerie possiamo usare?

CacheTower (multi-level)

github.com/TurnerSoftware/CacheTower

CacheManager (multi-level)

github.com/MichaCo/CacheManager

EasyCaching (multi-level)

github.com/dotnetcore/EasyCaching

FusionCache (hybrid)

github.com/ZiggyCreatures/FusionCache

Microsoft HybridCache (hybrid)



Tagging



Tagging

Questa feature è spettacolare.

Immaginiamo di aver bisogno, dopo aver aggiornato un dato, di dover «allineare» la cache.

Normalmente possiamo fare una semplice Remove(key), fine.

Questo però funziona solo se il dato modificato è riflesso in una singola cache entry.



Tagging

Ma cosa succede se:

• le entry impattate sono molteplici, con diverse cache key?

• le entry impattate non hanno un riferimento nella loro cache key?

Fondamentalmente: come possiamo operare su più cache entry in contemporanea?

Possiamo usare i tag.

E come?



Tagging

Quando scriviamo nella cache, assegnamo uno o più tag:



Tagging

Successivamente, eseguiamo una RemoveByTag(tag):

Fine, fatto, non serve altro.



Tagging

In ambito caching è una delle feature più potenti in assoluto.

E fra tutte le librerie di caching a disposizione, solo 2 supportano Tagging:

FusionCache

HybridCache (*)

Per entrambe le librerie il funzionamento è lo stesso, quello che abbiamo visto poco fa.

Il design interno e l’implementazione sono invece diverse fra di loro.



Tagging

Come abbiamo visto, a livello logico e come utilizzo la feature è dannatamente semplice.

Corrisponderebbe in un database tradizionale ad una query di questo tipo (pseudo codice):

DELETE FROM table WHERE ‘tag-1’ IN tags

In realtà, sotto sotto, questa feature è monumentale.

Per comprendere appieno il perchè, dobbiamo considerare alcuni aspetti.



Tagging

Le cache ibride usano le normali cache memory/distributed come building blocks:

Ossia esse sono i livelli sottostanti, su cui poter costruire:

• L1: memory cache

• L2: distributed cache

Se queste cache non supportano nativamente una feature, è difficile andare oltre.



Tagging

Consideriamo che tipicamente le cache (sia memory che distributed):

• non permettono di lavorare in modo massivo, su più cache key

• non permettono di eseguire query come DELETE FROM table WHERE ‘tag-1’ IN tags

• permettono di lavorare solo by-key: la key è sempre il punto d’ingresso

• nessuna cache (memory o distributed) supporta il concetto di tag

• una cache ibrida può essere composta da una L2 e tante L1, disperse su molte istanze/nodi

• operazioni multiple e concorrenti, applicate a una L2 + molte L1

• nei sistemi distribuiti esistono problematiche fondamentali a livello di clock/sync

• i sistemi distribuiti possono fallire, anche solo temporaneamente

Ok 



Tagging

Le fondamenta su cui poggiarsi per ottenere una feature come Tagging sono quelle.

E’ stata una sfida incredibilmente complessa e apparentemente impossibile.

Eppure, funziona tutto, e in FusionCache con delle performance sorprendenti.

 NOTE: se volete approfondire il design sottostante, ci sono i docs di FusionCache!



Tagging

In conclusione:

• l’utilità di questa feature è enorme, e apre scenari altrimenti inaccessibili

• da una parte abbiamo una complessità interna dannatamente elevata

• dall’altra, come visto, un utilizzo finale incredibilmente semplice, quasi banale

Questo contrasto rende Tagging una delle mie feature preferite in assoluto.



Named Caches (FusionCache)



Named Caches

E’ bello poter cambiare dinamicamente il setup da L1 a L1+L2.

Ma per quanto sia bello, dobbiamo fare una scelta: o L1, o L1+L2.

E se avessimo bisogno di setup diversi per scopi diversi?

FusionCache ci viene in soccorso.

E lo fa ispirandosi agli HTTP Named Clients di .NET stesso.



Named Caches

Con HTTP Named Clients facciamo AddHttpClient(name):



Named Caches

E poi lo otteniamo tramite IHttpClientFactory.CreateClient(name):



Named Caches

Allo stesso modo, con Named Caches facciamo AddFusionCache(name):



Named Caches

E poi la otteniamo tramite IFusionCacheProvider.GetCache(name):



Named Caches

E ovviamente ogni cache può avere setup e opzioni totalmente diverse:



Problemi



Problemi

Fin qui abbiamo coperto svariati requisiti, da semplici a molto complessi.

Ma abbiamo trascurato un dettaglio decisamente importante.

Le cose possono andare storte.

E pretendere che non sia così o non prepararsi significa perdere in partenza.



Problemi

Vediamo quindi quali problemi possono verificarsi in scenari reali.

E, soprattutto, vediamo come:

• prevenirli

• affrontarli

• mitigarli

• risolverli

Ne varrà la pena.



Problemi

Serve però fare una piccola premessa.

Le altre librerie sono tutte ottime, e vale la pena conoscerle per poter scegliere al meglio.

Detto ciò, ad oggi FusionCache è l’unica libreria che possiede feature legate alla resilienza.

Quindi tutto ciò che vedremo da qui in avanti è esclusivamente relativo a FusionCache.



Database: Errori



Database: Errori

A volte, quando si parla con il database, possono verificarsi errori temporanei.

Questi possono accadere per vari motivi:

query timeout: query scritta male, indice mancante

database restart: aggiornamento dell’engine, crash, riavvio

problemi network: perdita di connettività, cambiamento della topologia

Cosa succede allora?



Database: Errori

Questo:



Database: Errori

Quando il database genera errori, il nostro servizio genera errori:



Database: Errori

Ma se i dati nella cache sono già scaduti e il database non è disponibile, c'è davvero qualcosa 

che possiamo fare?

Entra in scena: Fail-Safe.



Fail-Safe (FusionCache)



Fail-Safe

Se memorizzassimo qualcosa in cache per, diciamo, 10 minuti, sarebbe un problema usarlo un 

po' di più nel caso in cui il database non sia disponibile?

In FusionCache, il meccanismo di Fail-Safe ci permette di fare proprio questo.

È come una «seconda chance» per quando le cose «vanno storte».



Fail-Safe: Senza



Fail-Safe: Con



Fail-Safe

Supponiamo di avere una Duration di 5 sec:

senza Fail-Safe: dopo 5 sec l’entry è scaduta, quindi eliminata dalla cache

con Fail-Safe: dopo 5 sec l’entry è considerata scaduta, ma non eliminata dalla cache

Con Fail-Safe la Duration diventa virtuale/logica.

In entrambi i casi dopo 5 sec ci sarà un refresh, ma con Fail-Safe il dato resterà comunque 

disponibile come fallback.

E in caso di problemi, l’entry scaduta viene temporaneamente risalvata nella cache, per un po’ di 

tempo extra (tutto configurabile).



Fail-Safe

Si usa così:



Fail-Safe: Senza

Senza Fail-Safe il nostro servizio riflette i problemi del database:



Fail-Safe: Con

Con Fail-Safe il nostro servizio sarà schermato dai problemi del database:



Fail-Safe: Sidney Lumet

Anno: 1964

Regia: Sidney Lumet

Fotogragia: Gerald Hirschfeld

Cast:

Edward Binns

Walter Matthau

Henry Fonda

Dan O'Herlihy

Fritz Weaver

Janet Ward

Frank Overton

Dana Elcar



Database: Rallentamenti



Database: Rallentamenti

A volte il database non è completamente offline o irrangingibile: è solo lento.

Questo può accadere per vari motivi:

overload: il database è attualmente sovraccarico

query non ottima: a volte non scriviamo le query più spettacolari

indice mancante: abbiamo dimenticato un indice

problemi network: congestione, cambiamento della topologia

Cosa succede allora?



Database: Rallentamenti

Quando il database è lento, il nostro servizio è lento:



Database: Rallentamenti

Ma se i dati sono già scaduti e il database è lento, cosa possiamo fare?

Forse... agire in modo proattivo?

Entra in scena: Eager Refresh.



Eager Refresh (FusionCache)



Eager Refresh

Con Eager Refresh aggiorniamo un valore prima che scada, ma solo dopo una certa soglia.

La soglia è espressa come percentuale della Duration con un valore da 0,0 a 1,0 dove:

0,5 = 50%

0,75 = 75%

etc

Quando viene effettuata una richiesta alla cache dopo la soglia, si attiva Eager Refresh.

Quando attivato:

il valore nella cache viene restituito immediatamente (dato che è ancora valido)

la factory viene eseguita in background, in modo non bloccante



Eager Refresh

Si abilita così:



Eager Refresh

Così facendo Eager Refresh ci aiuterà se arriva una richiesta:

dopo la soglia

prima della scadenza

all’interno della finestra di tempo chiamata Eager Refresh Window.



Eager Refresh

Ma cosa succede se non ci sono richieste all’interno di quella finestra?



Eager Refresh

Oppure se Eager Refresh si attivava puntualmente, ma la factory è particolarmente lenta?



Eager Refresh

Il problema è che l'esecuzione della factory è un’operazione bloccante:



Eager Refresh

Ma ecco il punto: se i dati nella cache sono scaduti, l'esecuzione della factory è un'operazione 

bloccante e il database è lento, c'è davvero qualcosa che possiamo fare?

(ormai avrete capito dove voglio andare a parare)

Entra in scena: Factory Timeouts.



Factory Timeouts (FusionCache)



Factory Timeouts

Se memorizziamo qualcosa in cache, diciamo, per 5 min, è un problema usarlo un po' di più nel 

caso il database sia lento?

Suona familiare, vero? Esatto, come Fail-Safe.

L'idea è che possiamo impostare un timeout speciale per l'esecuzione della factory.

Se scatta il timeout, verrà:

usato il valore scaduto, disponibile grazie a Fail-Safe

completata la factory in background



Factory Timeouts

Prima:



Factory Timeouts

Dopo:



Factory Timeouts

Si usa così:



Eager Refresh + Factory Timeouts: Senza

Senza Eager Refresh e Factory Timeouts eravamo così:



Eager Refresh + Factory Timeouts: Con

Abilitandoli siamo così:



Distributed Parts: Problemi



Distributed Parts: Problemi

Abbiamo visto come poter affrontare problemi durante la comunicazione con il database.

Ma il database non è l’unica componente distribuita, ci sono anche:

• distributed cache (L2)

• backplane

E anche con loro possiamo avere problemi.



Distributed Parts: Problemi

I motivi sono potenzialmente gli stessi:

• restart/crash

• overload

• problemi network

• etc

Quindi, cosa possiamo fare?



Distributed Parts: Problemi

A livello applicativo possiamo fare ben poco.

Anzi nulla.

Pensiamoci un attimo.



Distributed Parts: Problemi

Ok, quindi?

Qualcuno può fare qualcosa?

Si, la cache stessa.



Auto-Recovery (FusionCache)



Auto-Recovery

Facciamo così:

Vediamo una demo (se c’è tempo ).



Observability



Observability

In un sistema distribuito complesso ci sono in ogni momento parecchie attività in corso.

E sarebbe bello poter capire meglio cosa stia succedendo.

Si può fare qualcosa?



Observability

Si, abilitare Logging:



Observability

Otteniamo un log, se vogliamo, molto dettagliato:



Observability

Possiamo anche customizzare alcuni log level utilizzati:



Observability

Ma, ancor di più, possiamo usare OpenTelemetry:



Observability

E ottenere questa meraviglia:



Observability

Dove si possono osservare le varie operazioni sui livelli L1 e L2:



Observability

L’esecuzione della factory:



Observability

Quando è scattato il Factory Timeout e la factory è stata spostata in background:



Observability

E che la chiamata GetOrSet() iniziale è terminata prima, senza restare bloccata dalla factory:



Observability

E alla fine della factory in background l’update di L1+L2 e la notifica sul backplane:



HybridCache: Limitazioni E Problemi
(fine 2025)



HybridCache: Limitazioni E Problemi

Ricordate gli asterischi (*) che abbiamo visto prima?

Poiché l'attuale implementazione Microsoft è la primissima versione, presenta ancora alcune 

limitazioni e problemi.

La maggior parte non è legata all'astrazione, ma solo alla attuale implementazione di default.

Alcuni sono minori, altri più gravi, quindi è importante conoscerli.

Vediamo.



HybridCache: no new()

La classe concreta è internal, quindi non è possibile istanziare direttamente tramite new().

C'è un builder, ma anche quello è internal.

Questo significa affidarsi solo all'approccio DI.

Questo non è necessariamente un problema, ma è importante saperlo.



HybridCache: no controllo su L1/L2

Per quanto riguarda l'approccio DI, non possiamo specificare cosa fare con:

L1: memory level

L2: distributed level

Entrambi arrivano automaticamente dal DI container, senza alcun controllo.

Ad esempio, per L2:

se è registrato un servizio IDistributedCache, verrà utilizzato per forza

se non è registrato un servizio IDistributedCache, nulla verrà utilizzato

Stessa cosa per L1.



HybridCache: singola istanza

Di nuovo, riguardo DI: non possiamo avere più registrazioni di cache.

Questo significa che qualunque parte di codice userà la stessa istanza: dobbiamo fare attenzione 

alle possibili collisioni per le cache key.

E significa anche no a configurazioni multiple, dato che c’è un’unica istanza.



HybridCache: solo async

L’API è esclusivamente asincrona.

Non possiamo usare HybridCache nei call site sincroni, ma solo asincroni.

Si, ok: potremmo usare .Result oppure .GetAwaiter().GetResult() ma... dai, su.

Anche no.



HybridCache: no read-only

Non esistono metodi di sola lettura, quindi non è possibile semplicemente «leggere un valore».

Potrebbe sembrare possibile simularlo tramite un extension method custom che chiami 

GetOrCreateAsync() con alcune opzioni specifiche:

github.com/dotnet/extensions/issues/5688#issuecomment-2692247434

I problemi sono:

in una configurazione L1+L2 non funziona correttamente (nessuna copia da L2 a L1)

la stampede protection è non deterministica (su CACHE MISS)

Riguardo al secondo punto, vediamo meglio.



HybridCache: non deterministica

Questo è piuttosto subdolo.

Quando si chiama GetOrCreateAsync(key, factory) l'aspettativa è:

se il valore è nella cache (CACHE HIT) viene restituito

se il valore non è nella cache (CACHE MISS) viene eseguita la factory

Ma attualmente la factory non sempre viene eseguita su CACHE MISS.

E non c'è modo di saperlo o di controllarlo.

Vediamo un esempio concreto.



HybridCache: non deterministica

Provando a creare un metodo read-only, potremmo creare un ext method TryGetAsync():



HybridCache: non deterministica

Dichiariamo una variabile found, inizializzata a true (CACHE HIT):



HybridCache: non deterministica

Chiamiamo GetOrCreateAsync():



HybridCache: non deterministica

In caso di CACHE MISS verrà eseguita la factory, che imposterà found a false:



HybridCache: non deterministica

E verrà ritornato un valore di default:



HybridCache: non deterministica

E, per evitare di «sporcare la cache», verrà disabilitata la scrittura nella cache:



HybridCache: non deterministica

Supponiamo di fare chiamate in parallelo, con int come tipo:



HybridCache: non deterministica

Ci aspetteremmo questo:



HybridCache: non deterministica

... e invece otterremmo questo (sequenza diversa ad ogni esecuzione):

Fondamentalmente, il comportamento è non deterministico (su cache miss).



HybridCache: incoerente su più nodi

Attualmente HybridCache non ha qualcosa come il Backplane in FusionCache.

Quindi non può notificare gli altri nodi riguardo update o altro lasciando la cache, nel suo 

complesso, incoerente fino alla scadenza naturale del dato.

Come mitigazione possiamo diminuire LocalCacheExpiration, ma non è una vera soluzione.

Imho: l'attuale implementazione di default di HybridCache non è usabile con più di 1 nodo.



HybridCache: Limitazioni E Problemi

Dicevamo: quindi, c’è una soluzione?

Oh yeah.



AsHybridCache()



AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:

una astrazione

una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.



AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:

una astrazione

una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.

E FusionCache è una cache ibrida.



AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:

una astrazione

una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.

E FusionCache è una cache ibrida.

Ooooh 



AsHybridCache()

FusionCache resta un progetto indipendente, a sé stante.

Questo non cambia.

Ma lavorare con un'astrazione condivisa e parte di .NET stesso può avere valore.

Quindi FusionCache può essere utilizzata anche come implementazione della nuova astrazione 

HybridCache, il tutto mantenendo le funzionalità extra di FusionCache.

E tutto grazie a un piccolo adapter.

Come?



AsHybridCache()

Così:

Nessuna modifica al codice necessaria, da nessuna parte.



AsHybridCache()

Ricordate tutti quei (*)?

Spariti.

Utilizzando FusionCache come implementazione di HybridCache otteniamo:

cache stampede: unificata + deterministica + sync/async

controllo: controllo completo su L1/L2

backplane: notifiche distribuite e istantanee multi-nodo

cache sempre coerente: bye bye nodi fuori sync, incluso per Tagging

cache multiple: possiamo usare Named Caches con Keyed Services

extra feature: Fail-Safe, Eager Refresh, Factory Timeouts, Auto-Recovery, ecc



AsHybridCache()

Riguardo al non determinismo, ora è così, sempre:



AsHybridCache()

Timeline:

Nov 2024: rilascio astrazione HybridCache (con .NET 9)

Gen 2025: rilascio FusionCache v2 (con HybridCache adapter)

Mar 2025: rilascio implementazione HybridCache di default (Microsoft)

Prima implementazione production-ready al mondo 



Quindi, hybrid caching?



Quindi, hybrid caching?

Per passare al caching ibrido possiamo:

usare FusionCache, direttamente

usare l'astrazione HybridCache, con l'implementazione default di Microsoft (*)

usare l'astrazione HybridCache, con l'implementazione FusionCache

Abbiamo diverse scelte, sfruttiamole al meglio.



Grazie!

github.com/jodydonetti

twitter.com/jodydonetti

linkedin.com/in/jody-donetti

Su Dometrain:



Feedback, please 


	Slide 1
	Slide 2: Jody Donetti
	Slide 3: Hybrid Caching: Dove Eravamo Rimasti
	Slide 4: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 5: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 6: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 7: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 8: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 9: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 10: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 11: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 12: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 13: Tagging
	Slide 14: 🏷️ Tagging
	Slide 15: 🏷️ Tagging
	Slide 16: 🏷️ Tagging
	Slide 17: 🏷️ Tagging
	Slide 18: 🏷️ Tagging
	Slide 19: 🏷️ Tagging
	Slide 20: 🏷️ Tagging
	Slide 21: 🏷️ Tagging
	Slide 22: 🏷️ Tagging
	Slide 23: 🏷️ Tagging
	Slide 24: Named Caches (FusionCache)
	Slide 25: 📛 Named Caches
	Slide 26: 📛 Named Caches
	Slide 27: 📛 Named Caches
	Slide 28: 📛 Named Caches
	Slide 29: 📛 Named Caches
	Slide 30: 📛 Named Caches
	Slide 31: Problemi
	Slide 32: 🚨 Problemi
	Slide 33: 🚨 Problemi
	Slide 34: 🚨 Problemi
	Slide 35: Database: Errori
	Slide 36: 💣 Database: Errori
	Slide 37: 💣 Database: Errori
	Slide 38: 💣 Database: Errori
	Slide 39: 💣 Database: Errori
	Slide 40: Fail-Safe (FusionCache)
	Slide 41: 💣 Fail-Safe
	Slide 42: 💣 Fail-Safe: Senza
	Slide 43: 💣 Fail-Safe: Con
	Slide 44: 💣 Fail-Safe
	Slide 45: 💣 Fail-Safe
	Slide 46: 💣 Fail-Safe: Senza
	Slide 47: 💣 Fail-Safe: Con
	Slide 48: ❤️ Fail-Safe: Sidney Lumet
	Slide 49: Database: Rallentamenti
	Slide 50: 🐌 Database: Rallentamenti
	Slide 51: 🐌 Database: Rallentamenti
	Slide 52: 🐌 Database: Rallentamenti
	Slide 53: Eager Refresh (FusionCache)
	Slide 54: 🦅 Eager Refresh
	Slide 55: 🦅 Eager Refresh
	Slide 56: 🦅 Eager Refresh
	Slide 57: 🦅 Eager Refresh
	Slide 58: 🦅 Eager Refresh
	Slide 59: 🦅 Eager Refresh
	Slide 60: 🦅 Eager Refresh
	Slide 61: Factory Timeouts (FusionCache)
	Slide 62: ⏱️ Factory Timeouts
	Slide 63: ⏱️ Factory Timeouts
	Slide 64: ⏱️ Factory Timeouts
	Slide 65: ⏱️ Factory Timeouts
	Slide 66: ⏱️ Eager Refresh + Factory Timeouts: Senza
	Slide 67: ⏱️ Eager Refresh + Factory Timeouts: Con
	Slide 68: Distributed Parts: Problemi
	Slide 69: 💣 Distributed Parts: Problemi
	Slide 70: 💣 Distributed Parts: Problemi
	Slide 71: 💣 Distributed Parts: Problemi
	Slide 72: 💣 Distributed Parts: Problemi
	Slide 73: Auto-Recovery (FusionCache)
	Slide 74: ↩️ Auto-Recovery
	Slide 75: Observability
	Slide 76: 🔭 Observability
	Slide 77: 🔭 Observability
	Slide 78: 🔭 Observability
	Slide 79: 🔭 Observability
	Slide 80: 🔭 Observability
	Slide 81: 🔭 Observability
	Slide 82: 🔭 Observability
	Slide 83: 🔭 Observability
	Slide 84: 🔭 Observability
	Slide 85: 🔭 Observability
	Slide 86: 🔭 Observability
	Slide 87: HybridCache: Limitazioni E Problemi (fine 2025)
	Slide 88: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 89: Ⓜ️ HybridCache: no new()
	Slide 90: Ⓜ️ HybridCache: no controllo su L1/L2
	Slide 91: Ⓜ️ HybridCache: singola istanza
	Slide 92: Ⓜ️ HybridCache: solo async
	Slide 93: Ⓜ️ HybridCache: no read-only
	Slide 94: Ⓜ️ HybridCache: non deterministica
	Slide 95: Ⓜ️ HybridCache: non deterministica
	Slide 96: Ⓜ️ HybridCache: non deterministica
	Slide 97: Ⓜ️ HybridCache: non deterministica
	Slide 98: Ⓜ️ HybridCache: non deterministica
	Slide 99: Ⓜ️ HybridCache: non deterministica
	Slide 100: Ⓜ️ HybridCache: non deterministica
	Slide 101: Ⓜ️ HybridCache: non deterministica
	Slide 102: Ⓜ️ HybridCache: non deterministica
	Slide 103: Ⓜ️ HybridCache: non deterministica
	Slide 104: Ⓜ️ HybridCache: incoerente su più nodi
	Slide 105: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 106: AsHybridCache()
	Slide 107: 🦥 AsHybridCache()
	Slide 108: 🦥 AsHybridCache()
	Slide 109: 🦥 AsHybridCache()
	Slide 110: 🦥 AsHybridCache()
	Slide 111: 🦥 AsHybridCache()
	Slide 112: 🦥 AsHybridCache()
	Slide 113: 🦥 AsHybridCache()
	Slide 114: 🦥 AsHybridCache()
	Slide 115: Quindi, hybrid caching?
	Slide 116: 🚀 Quindi, hybrid caching?
	Slide 117: Grazie!
	Slide 118: Feedback, please 🙂

