Oltre HybridCache: FusionCache

Jody Donetti

DotNetConf Liguria 2025

Jody Donetti

Code + R&D
Faccio cose (principalmente) sul web da circa 30 anni.

Ho avuto a che fare con la maggior parte dei tipi di cache: memory,
distributed, hybrid, HTTP, offline e CDN.

Ho creato FusionCache, una hybrid cache .NET free + OSS.

= Google OSS Award
= Microsoft MVP Award

Hybrid Caching: Dove Eravamo Rimasti

4 Hybrid Caching: Dove Eravamo Rimasti

Quindi, ricapitolando.

Tramite una cache ibrida possiamo ottenere il meglio di entrambi i mondi:
caching in memoria
caching distribuito

Per la parte in memoria abbiamo L1 (primo livello).
Per la parte distribuita abbiamo L2 (secondo livello).

4 Hybrid Caching: Dove Eravamo Rimasti

Non siamo obbligati ad usare 2 livelli, possiamo usarne anche solo uno in memoria (L1):

L0CAL

5 APPLICATION £ NYBRID CACHE 4 11 (MEMORY CACHE)

() DATABASE

REMOTE

4 Hybrid Caching: Dove Eravamo Rimasti

E in qualunque momento abilitare, anche dinamicamente, il livello distribuito (L2):

L0CAL

REMOTE

(=) APPLICATION

() DATABASE

&’ HYBRID CACHE

(DE)SERTALLZATION

4% L1 (MEMORY (ACHE)

%4 12 (DISTRIBUTED CACHE)

4 Hybrid Caching: Dove Eravamo Rimasti

Il tutto senza cambiare il nostro codice dovunque, grazie ad una API unificata:

S SN) E—
;'f | £ IYBRID CACHE
il

= 0 DATAMASE

4 Hybrid Caching: Dove Eravamo Rimasti

Potremmo poi dover scalare orizzontalmente, con scenari multi-nodo (L1 multiple):

%4 12 (DISTRIBUTED CACHE)

NODE 1 NODE 2 NODE 3
4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE)

4 Hybrid Caching: Dove Eravamo Rimasti

In tal caso possiamo semplicemente aggiungere un backplane:

%4 12 (DISTRIBUTED CACHE)

NODE 1 NODE 2 NODE 3

4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE)

&) BACKPLANE

4 Hybrid Caching: Dove Eravamo Rimasti

Cosi facendo la coerenza verra gestita automaticamente tramite notifiche distribuite.

E, di nuovo, non dovremmo cambiare il nostro codice dovunque.

Not bad.

4 Hybrid Caching: Dove Eravamo Rimasti

Quali librerie possiamo usare?

© CacheTower (multi-level)
github.com/TurnerSoftware/CacheTower

@ CacheManager (multi-level)
github.com/MichaCo/CacheManager

@ EasyCaching (multi-level)
github.com/dotnetcore/EasyCaching

@ FusionCache (hybrid)
github.com/ZiggyCreatures/FusionCache

@ Microsoft HybridCache (hybrid)

4 Hybrid Caching: Dove Eravamo Rimasti

@ FusionCache (hybrid)
github.com/ZiggyCreatures/FusionCache

@ Microsoft HybridCache (hybrid)

Tagging

© Tagging

Questa feature e spettacolare.

Immaginiamo di aver bisogno, dopo aver aggiornato un dato, di dover «allineare» la cache.

Normalmente possiamo fare una semplice Remove(key), fine.

Questo pero funziona solo se il dato modificato e riflesso in una singola cache entry.

© Tagging

Ma cosa succede se:

* le entry impattate sono molteplici, con diverse cache key?

* le entry impattate non hanno un riferimento nella loro cache key?
Fondamentalmente: come possiamo operare su piu cache entry in contemporanea?

Possiamo usare i tag.

E come?

© Tagging

Quando scriviamo nella cache, assegnamo uno o piu tag:

<int>("foo", 1, : ["tag-1", "tag-2"]);
<int>("bar", 2, : ["tag-2", "tag-3"]);
<int>("baz", => 3, : ["tag-1", "tag-3"]);

© Tagging

Successivamente, eseguiamo una RemoveByTag(tag):

(Iltag_lll) A

Fine, fatto, non serve altro.

© Tagging

In ambito caching e una delle feature piu potenti in assoluto.

E fra tutte le librerie di caching a disposizione, solo 2 supportano Tagging:
L2 FusionCache

&4 HybridCache (*)

Per entrambe le librerie il funzionamento e lo stesso, quello che abbiamo visto poco fa.

Il design interno e I'implementazione sono invece diverse fra di loro.

© Tagging

Come abbiamo visto, a livello logico e come utilizzo |a feature e dannatamente semplice.

Corrisponderebbe in un database tradizionale ad una query di questo tipo (pseudo codice):

DELETE FROM table WHERE ¢tag-1’ IN tags

In realta, sotto sotto, questa feature € monumentale.

Per comprendere appieno il perche, dobbiamo considerare alcuni aspetti.

© Tagging

Le cache ibride usano le normali cache memory/distributed come building blocks:
Ossia esse sono i livelli sottostanti, su cui poter costruire:
* L1: memory cache

e L2: distributed cache

Se queste cache non supportano nativamente una feature, e difficile andare oltre.

© Tagging

Consideriamo che tipicamente le cache (sia memory che distributed):

* non permettono di lavorare in modo massivo, su piu cache key

* non permettono di eseguire query come DELETE FROM table WHERE ¢tag-1’ IN tags
« permettono di lavorare solo by-key: la key e sempre il punto d’ingresso

« nessuna cache (memory o distributed) supporta il concetto di tag

* una cache ibrida puo essere composta da una L2 e tante L1, disperse su molte istanze/nodi

« operazioni multiple e concorrenti, applicate a una L2 + molte L1

* nei sistemi distribuiti esistono problematiche fondamentali a livello di clock/sync

* i sistemi distribuiti possono fallire, anche solo temporaneamente

Ok s

© Tagging

Le fondamenta su cui poggiarsi per ottenere una feature come Tagging sono quelle.
E’' stata una sfida incredibilmente complessa e apparentemente impossibile.

Eppure, funziona tutto, e in FusionCache con delle performance sorprendenti.

B} NOTE: se volete approfondire il design sottostante, ci sono i docs di FusionCache!

© Tagging

In conclusione:
« ['utilita di questa feature e enorme, e apre scenari altrimenti inaccessibili

« da una parte abbiamo una complessita interna dannatamente elevata

 dall'altra, come visto, un utilizzo finale incredibilmente semplice, quasi banale

Questo contrasto rende Tagging una delle mie feature preferite in assoluto.

Named Caches (FusionCache)

& Named Caches

E' bello poter cambiare dinamicamente il setup da L1 a L1+L2.
Ma per quanto sia bello, dobbiamo fare una scelta: o L1, o L1+L2.

E se avessimo bisogno di setup diversi per scopi diversi?

FusionCache ci viene in soccorso.

E lo fa ispirandosi agli HTTP Named Clients di .NET stesso.

& Named Caches

Con HTTP Named Clients facciamo AddHttpClient(name):

("GitHub",

= new ("https://api.github.com/");

& Named Caches

E poi lo otteniamo tramite IHttpClientFactory.CreateClient(name):

public class MyController :
{

private readonly

public
{

("GitHub");
}

& Named Caches

Allo stesso modo, con Named Caches facciamo AddFusionCache(name):

("Products");
("Customers") ;

& Named Caches

E poi la otteniamo tramite IFusionCacheProvider.GetCache(name):

private readonly

public

1

("Products") ;
}

& Named Caches

E ovviamente ogni cache puo avere setup e opzioni totalmente diverse:

("Products")
(...)
(...)
(...)
(...);

("Customers")

)5

A& Problemi

Fin qui abbiamo coperto svariati requisiti, da semplici a molto complessi.
Ma abbiamo trascurato un dettaglio decisamente importante.

Le cose possono andare storte.

E pretendere che non sia cosi 0 non prepararsi significa perdere in partenza.

A& Problemi

Vediamo quindi quali problemi possono verificarsi in scenari reali.

E, soprattutto, vediamo come:
« prevenirli

 affrontarli

« mitigarli

e risolverli

Ne varra la pena.

A& Problemi

Serve pero fare una piccola premessa.
Le altre librerie sono tutte ottime, e vale la pena conoscerle per poter scegliere al meglio.

Detto cio, ad oggi FusionCache ¢ |'unica libreria che possiede feature legate alla resilienza.

Quindi tutto cio che vedremo da qui in avanti e esclusivamente relativo a FusionCache.

..' I_

Database: Errori

@ Database: Errori

A volte, quando si parla con il database, possono verificarsi errori temporanei.

Questi possono accadere per vari motivi:

« query timeout: query scritta male, indice mancante

- database restart: aggiornamento dell’engine, crash, riavvio

- problemi network: perdita di connettivita, cambiamento della topologia

Cosa succede allora?

=1

SELECT * FROM Product WHERE Id

SERVICE

- J
A o

Errori

°
°
GET /product/1

@ Database
Questo:
X

@ Database: Errori

Quando il database genera errori, il nostro servizio genera errori:

DATABASE

-- - - - -
2~ i Sao “n o
- - \
’ I
\
!] \
i ' .
I]
I !
—MA“\/I
L] J L L} L | L]
L P ,--‘-"../--'--—_-.
’ / »
- \
-]
!
N [}
]
!
]
A ! ' A
L J
[§

—

J it 3 stow] DOWNTIME 1 N
RESPONSE TIME] NO RESPONSE

YOUR SERVICE

—4

@ Database: Errori

Ma se i dati nella cache sono gia scaduti e il database non e disponibile, c'e davvero qualcosa
che possiamo fare?

Entra in scena: Fail-Safe.

@ Fail-Safe

Se memorizzassimo qualcosa in cache per, diciamo, 10 minuti, sarebbe un problema usarlo un
po’ di piu nel caso in cui il database non sia disponibile?

In FusionCache, il meccanismo di Fail-Safe ci permette di fare proprio questo.

E come una «seconda chance» per quando le cose «vanno storte».

=1

SELECT * FROM Product WHERE Id

SERVICE

- J
A o

Senza
GET /product/1

@ Fail-Safe
X

Auwv —

DATABASE (FAIL) |

=C llﬂlllllﬁlill

r--

=1

SELECT * FROM Product WHERE Id

_

|

_

|

_

_

[

I

)

I

_

.

)
&=
CACHE

SERVICE

_oa

Con
GET /product/1

@<

@ Fail-Safe

@ Fail-Safe

Supponiamo di avere una Duration di 5 sec:
- senza Fail-Safe: dopo 5 sec I'entry e scaduta, quindi eliminata dalla cache
- con Fail-Safe: dopo 5 sec I'entry e considerata scaduta, ma non eliminata dalla cache

Con Fail-Safe la Duration diventa virtuale/logica.

In entrambi i casi dopo 5 sec ci sara un refresh, ma con Fail-Safe il dato restera comunque
disponibile come fallback.

E in caso di problemi, I'entry scaduta viene temporaneamente risalvata nella cache, per un po’ di
tempo extra (tutto configurabile).

@ Fail-Safe

Si usa cosi:

- product =

"oroduct: {id}",
== (42) ’

QRLERERR (1))

(true, TimeSpan. (24), TimeSpan.

@ Fail-Safe: Senza

Senza Fail-Safe il nostro servizio riflette i problemi del database:

DATABASE

P N ,"_"‘-._I’_-"\. PN
- - \
’ I
\
' ! \
| I .
I]
I !
—MJ-’_—_‘VI
Y - N A — i
) L} L | L]

= L
S
—
J it 3 stow] DOWNTIME 1 N

RESPONSE TIME ~-] NO RESPONSE

@ Fail-Safe: Con

Con Fail-Safe il nostro servizio sara schermato dai problemi del database:

DATABASE

YOUR SERVICE

ﬂ-

J it 3 stow] DOWNTIME 1 N
RESPONSE TIME NO RESPONSE

W Fail-Safe: Sidney Lumet

Anno: 1964

Regia: Sidney Lumet
Fotogragia: Gerald Hirschfeld

Cast:

« Edward Binns
Walter Matthau
Henry Fonda
Dan O'Herlihy
Fritz Weaver
Janet Ward
Frank Overton

Dana Eca FAII. SAFE

‘® Database: Rallentamenti

A volte il database non e completamente offline o irrangingibile: e solo lento.

Questo puo accadere per vari motivi:

- overload: il database e attualmente sovraccarico

- query non ottima: a volte non scriviamo le query piu spettacolari
+ indice mancante: abbiamo dimenticato un indice

- problemi network: congestione, cambiamento della topologia

Cosa succede allora?

‘® Database: Rallentamenti

Quando il database e lento, il nostro servizio e lento:

DATABASE

YOUR SERVICE

ﬂb

J it 3 stow] DOWNTIME 1 N
RESPONSE TIME NO RESPONSE

\® Database: Rallentamenti

Ma se i dati sono gia scaduti e il database e lento, cosa possiamo fare?

Forse... agire in modo proattivo?

Entra in scena: Eager Refresh.

Eager Refresh (FusionCache)

% Eager Refresh

Con Eager Refresh aggiorniamo un valore prima che scada, ma solo dopo una certa soglia.

La soglia e espressa come percentuale della Duration con un valore da 0,0 a 1,0 dove:

- 0,5=50%
« 0,75 =75%
- etc

Quando viene effettuata una richiesta alla cache dopo la soglia, si attiva Eager Refresh.

Quando attivato:
« il valore nella cache viene restituito immediatamente (dato che e ancora valido)
- la factory viene eseqguita in background, in modo non bloccante

& Eager Refresh

Si abilita cosi:

- id = 425

- product =

"oroduct:{id}",

(TimeSpan.

(0.9F)

& Eager Refresh

Cosi facendo Eager Refresh ci aiutera se arriva una richiesta:
- dopo la soglia
« prima della scadenza

all'interno della finestra di tempo chiamata Eager Refresh Window.

EAGER REFRESH
WINDOW
~—
A - -~ __J

DURATION (10 sec)

& Eager Refresh

Ma cosa succede se non ci sono richieste all'interno di quella finestra?

U DB QUERY (1 stc)

w _J .)
B o TN

DURATION (10 sec) DURATION (10 sec)

& Eager Refresh

Oppure se Eager Refresh si attivava puntualmente, ma la factory e particolarmente lenta?

4
=
k1 k] B {

L j DB QUERY (¥ sec)

w = % __)
S i TN

DURATION (10 sec) DURATION (10 sec)

% Eager Refresh

Il problema e che I'esecuzione della factory e un‘operazione bloccante:

GetOrSet()

CACHE

FACTORY

0 Ms

100 ws

200 s

300 ms

K00 M5

CRECK

SAVE

(BLOCKING)

DONE + NEW VALUE AVAILABLE

& Eager Refresh

Ma ecco il punto: se i dati nella cache sono scaduti, I'esecuzione della factory e un'operazione
bloccante e il database e lento, c'e davvero qualcosa che possiamo fare?

(ormai avrete capito dove voglio andare a parare)

Entra in scena: Factory Timeouts.

Factory Timeouts (FusionCache)

Factory Timeouts

Se memorizziamo qualcosa in cache, diciamo, per 5 min, e un problema usarlo un po' di piu nel
caso il database sia lento?

Suona familiare, vero? Esatto, come Fail-Safe.
L'idea e che possiamo impostare un timeout speciale per I'esecuzione della factory.
Se scatta il timeout, verra:

- usato il valore scaduto, disponibile grazie a Fail-Safe
- completata la factory in background

Factory Timeouts

Prima:

0 ms 100 ms 200 ms 300 ms 100 ms
GetOrSet()
CACHE)} CHECK SAVE
FACTORY (BLOCKING)

DONE + NEW VALUE AVAILABLE

Factory Timeouts

Dopo:

GetOrSet()

CACHE

FACTORY

0 Ms 100 ms 200 ms
CHECK SAVE
(BLOCKING)

TIMEOUT

DONE

300 ms

NEW VALUE AVALLABLE

K00 M5

Factory Timeouts

Si usa cosi:

®
var id = 42;

var product =

"product: {id}",
=2 (42),

(TimeSpan.

(TimeSpan. (100), TimeSpan.

Eager Refresh + Factory Timeouts: Senza

Senza Eager Refresh e Factory Timeouts eravamo cosi:

DATABASE

YOUR SERVICE

J it 3 stow] DOWNTIME 1 N
RESPONSE TIME NO RESPONSE

Eager Refresh + Factory Timeouts: Con

Abilitandoli siamo cosi:

L

DATABASE

%

YOUR SERVICE

[mst 1 stow] DOWNTIME 1 Min
RESPONSE TIME N0 RESPONSE

@ Distributed Parts: Problemi

Abbiamo visto come poter affrontare problemi durante la comunicazione con il database.
Ma il database non e I'unica componente distribuita, ci sono anche:
e distributed cache (L2)

* backplane

E anche con loro possiamo avere problemi.

@ Distributed Parts: Problemi

| motivi sono potenzialmente gli stessi:
 restart/crash

« overload

« problemi network

* etc

Quindi, cosa possiamo fare?

@ Distributed Parts: Problemi

A livello applicativo possiamo fare ben poco.
Anzi nulla.

Pensiamoci un attimo.

@ Distributed Parts: Problemi

Ok, quindi?

Qualcuno puo fare qualcosa?

Si, la cache stessa.

Auto-Recovery (FusionCache)

k=) Auto-Recovery

Facciamo cosi:

Vediamo una demo (se c'é tempo &).

Observability '

A Observability

In un sistema distribuito complesso ci sono in ogni momento parecchie attivita in corso.

E sarebbe bello poter capire meglio cosa stia succedendo.

Si puo fare qualcosa?

A Observability

Si, abilitare Logging:

A Observability

Otteniamo un log, se vogliamo, molto dettagliato:

Microsoft Visual Studio Debu +

1]
[
oo

FUSION FusionCache I=BHNHLGOTS4M5T] (0=BHNHLG@TS4NSY): [BP] backplane connected
FUSION FL AHNHLGE \ (0=BHNHLGBTS4ANG® K= Ttk) SetAsync<T> call FEO[DUR=1m LKTO=/ SKMR=N SKM#
FUSION FL e AHMHLGE \ (0=BHNHLG® NB2 K=yl ep): GetOrSetAsync<T= call FEO[DUR=1m L ;
FUSION FL AHNHL GATS4N [O=BHNHL GE K=MyCz :): GetOrSetAsync<T= return FE(M) [T

FUSION Fusi N AHNHLGAT 24N [O=BHNHLGE 63 K= hePrefi }: TryGetAsync<T= call FEO[DUR=1m LK

FUSION Fusi h AHNHLGE - [0=BHNHLGE 64 K= hePrefix:_ foot:!): GetOrSetAsync<T> call FEO[DU

FUSION FL AHNHLGE \ [O=BHNHLGE 64 K=MyCachePrefix:_ fc:t:'): GetOrSetAsync<T= return FE(M

FUSION L = : [0=BHNHLGE 65 K=y neP Fe:t-#): GetOrSetAsync<T= call FEO[DU

FUSION L T=BHNHLGE N [0=BHNHLGE 35 K= nep (GetOrSetAsync<T= return FE(M)

FUSION Fus T=BHNHL GATS4NS [O=BHNHLGE 63 K=MyCachePre 1): TryGetAsync<T= return (has value)

FUSION Fusa : T=BHNHLGATSAN BaNoE K=MyCacheP): TryGetAsync<T= call FEO[DUR=1m LKTO=/

FUSION FL AHNHL GATS4N [O=BHNHL GE H K= heP): TryGetAsync<T= return (has value)

FUSION L PHNHLGE - [O=BHNHLGATS4NGT K=MyCachePre) RemoveAsync call FEO[DUR=1m LKTO=/

FUSION Fusi BHNHLGA TSN (0=0HNHLG® K=MyCacheP): GetOrDefaultAsync<T> call FEO[DUR /
FUSION he I=BHNHLGOTS4NST] (0=BHNHLGOTS4N6S K=MyCachePrefi .): GetOrDefaultAsync<T= return (default value)

1
=]
[O T O O TR 1 O O O N 1 O O O B =

[T=pf=

|
|
|
3:1
321
|
|
|
3:1
321
|
3:1
|

A Observability

Possiamo anche customizzare alcuni log level utilizzati:

A Observability

Ma, ancor di piu, possiamo usare OpenTelemetry:

A Observability

E ottenere questa meraviglia:

name v @ Os 0.58 1s 1.5s 217s
e (1) TopLeve Acton (Getorse +Tmeout) |10 N O |
get o set fom cache 0TS 1 e .
» get from cache level | 11.5us
. get from cache level | 2.10ps
« get from cache level [Bms]

execute factory

= set to cache level

| 21.7ps
- set to cache level

18.0ps |
= settocache level

s2zezms [N
- publish to backplane

13.3us |

A Observability

Dove si possono osservare le varie operazioni sui livelli L1 e L2:

name v @ Os 0.58 1s 1.5s 217s

e (1) TopLeve Acton Getorset +Tmeout) [T1C2 I e A |

get from cache level | 11.5us
get from cache level I | 2.10ps

get from cache level

R v
set to cache level | 21.7ps
set to cache level 18.0ps |

set to cache level s2zezms [N

publish to backplane 13.3us |

A Observability

L'esecuzione della factory:

name v @ Os

m Top-Level Action (GetOrSet + Timeout)

get or set from cache
= get from cache level
. get from cache level
« get from cache level
execute factory
« settocache level
= settocache level
= settocache level

- publish to backplane

0.58 1s 1.5s

2S5

107 I) B
| 11.5us

| 2.10ps

DTTT0 L o e o o o o o o
| s O T e——

18.0us

62.82ms

2171s

13.3us

A Observability

Quando e scattato il Factory Timeout e la factory e stata spostata in background:

name v @ Os 0.5s

1s 1.58 217s
e+ (3] TopLve Acton (Gtorset oyt T2 S
oot st fom cache TS
» get from cache level | 11.5us
. get from cache level | 2.10ps
« get from cache level [Bms] -
it o VS S R
- settocache level b HW. us
= settocache level 18.0ps |
« settocache level s2.82ms [

« publish to backplane 13.3us |

A Observability

E che la chiamata GetOrSet() iniziale & terminata prima, senza restare bloccata dalla factory:

I- - I
name v @ Os 0.58 1s I 1.5s 217s
+««[1] Top-Level Action (GetOrSet + Timeout) |
getrset o cche R
« et from cache level | 11.5us | Sp— |
. get from cache level | 2.10ps
« get from cache level [Bms]
et ooy I Y

- settocache level | 21.7ps

= settocache level 18.0ps |

s2zezms [N

13.3us |

= settocache level

- publish to backplane

A Observability

E alla fine della factory in background l'update di L1+L2 e la notifica sul backplane:

name v @ Os 0.58 1s 1.5s 217s
v« (7] To-Lve Acton (cetorset Teovty 1025 .
gt or et rom cache DTS .
get from cache level | 11.5us
get from cache level | 2.10ps
get from cache level [Bms] - - -I
it o 01 S O e |
set to cache level | 21.7ps I I
set to cache level I 18.0ps | I
set to cache level I

publish to backplane

HybridCache: Limitazioni E Problemi
(fine 2025)

& HybridCache: Limitazioni E Problemi

Ricordate gli asterischi (*) che abbiamo visto prima?

Poiché I'attuale implementazione Microsoft e la primissima versione, presenta ancora alcune
limitazioni e problemi.

La maggior parte non e legata all'astrazione, ma solo alla attuale implementazione di default.

Alcuni sono minori, altri piu gravi, quindi e importante conoscerli.

Vediamo.

& HybridCache: no new()

La classe concreta e internal, quindi non e possibile istanziare direttamente tramite new().
C'e un builder, ma anche quello e internal.

Questo significa affidarsi solo all'approccio DI.

Questo non e necessariamente un problema, ma e importante saperlo.

& HybridCache: no controllo su L1/L2

Per quanto riguarda |'approccio DI, non possiamo specificare cosa fare con:
« L1: memory level
« L2: distributed level

Entrambi arrivano automaticamente dal DI container, senza alcun controllo.

Ad esempio, per L2:
« se e registrato un servizio IDistributedCache, verra utilizzato per forza
« se non e registrato un servizio IDistributedCache, nulla verra utilizzato

Stessa cosa per L1.

& HybridCache: singola istanza

Di nuovo, riguardo DI: non possiamo avere piu registrazioni di cache.

Questo significa che qualunque parte di codice usera la stessa istanza: dobbiamo fare attenzione
alle possibili collisioni per le cache key.

E significa anche no a configurazioni multiple, dato che c’e un’unica istanza.

@& HybridCache: solo async

L'AP| e esclusivamente asincrona.
Non possiamo usare HybridCache nei call site sincroni, ma solo asincroni.

Si, ok: potremmo usare .Result oppure .GetAwaiter().GetResult() ma.. daij, su.

Anche no.

@ HybridCache: no read-only

Non esistono metodi di sola lettura, quindi non e possibile semplicemente «leggere un valore».

Potrebbe sembrare possibile simularlo tramite un extension method custom che chiami
GetOrCreateAsync() con alcune opzioni specifiche:

github.com/dotnet/extensions/issues/5688#issuecomment-2692247434

| problemi sono:
« in una configurazione L1+L2 non funziona correttamente (nessuna copia da L2 a L1)

 la stampede protection e non deterministica (su CACHE MISS)

Riguardo al secondo punto, vediamo meglio.

& HybridCache: non deterministica

Questo e piuttosto subdolo.

Quando si chiama GetOrCreateAsync(key, factory) l'aspettativa e:
« se il valore e nella cache (CACHE HIT) viene restituito

« se il valore non é nella cache (CACHE MISS) viene eseguita la factory

Ma attualmente la factory non sempre viene eseguita su CACHE MISS.

E non c'e modo di saperlo o di controllarlo.

Vediamo un esempio concreto.

& HybridCache: non deterministica

Provando a creare un metodo read-only, potremmo creare un ext method TryGetAsync():

public static async , T7 <T>(this

var found true;
var value await
=

{

= false;
return . (default(T));

)

return (

& HybridCache: non deterministica

Dichiariamo una variabile found, inizializzata a true (CACHE HIT):

public static async , T7 <T>(this

var found true;
var value await
=

{

= false;
return . (default(T));

)

return (

& HybridCache: non deterministica

Chiamiamo GetOrCreateAsync():

public static async , T7 <T>(this

var found true;
var value await
=

{

= false;
return . (default(T));

)

return (

& HybridCache: non deterministica

In caso di CACHE MISS verra eseqguita la factory, che impostera found a false:

public static async , T7 <T>(this

var found true;
var value await
=

{

= false;
return . (default(T));

)

return (

& HybridCache: non deterministica

E verra ritornato un valore di default:

public static async , T7 <T>(this

var found true;
var value await
=

{

— fn1qm:
return . (default(T));

)

return (

& HybridCache: non deterministica

E, per evitare di «sporcare la cache», verra disabilitata |la scrittura nella cache:

public static async , T7 <T>(this

var found true;
var value await
=

{

= false;
return . (default(T));

)

return (

& HybridCache: non deterministica

Supponiamo di fare chiamate in parallelo, con int come tipo:

("PARALLEL:");
await - (6, 10, async (_,

{

var foo = await . <int>("foo");
($"value = {foo.Value}, found = {foo.Found.ToString().ToUpper()}");

1)

& HybridCache: non deterministica

Ci aspetteremmo questo:

Microsoft Visual Studie X -F

PARALLEL:

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

0
0
0
0
0
0
0
0
0
0

value found

-

& HybridCache: non deterministica

... € invece otterremmo questo (sequenza diversa ad ogni esecuzione):

Microsoft Visual Studiec X ==

PARALLEL:
value found

found

-

value

value found

found
found
found
found
found
found
found

value

-

value
value
value

-

value

value

value

-

Fondamentalmente, il comportamento € non deterministico (su cache miss).

& HybridCache: incoerente su piu nodi

Attualmente HybridCache non ha qualcosa come il Backplane in FusionCache.

Quindi non puo notificare gli altri nodi riguardo update o altro lasciando la cache, nel suo
complesso, incoerente fino alla scadenza naturale del dato.

Come mitigazione possiamo diminuire LocalCacheExpiration, ma non e una vera soluzione.

Imho: I'attuale implementazione di default di HybridCache non e usabile con piu di 1 nodo.

& HybridCache: Limitazioni E Problemi

Dicevamo: quindi, c'e una soluzione?

Oh yeah.

AsHybridCache

=15

¥ AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:

« una astrazione
- una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.

¥ AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:
« una astrazione
- una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.

E FusionCache e una cache ibrida.

¥ AsHybridCache()

Dunque, abbiamo visto come HybridCache sia due cose:

« una astrazione

- una implementazione di default

E in quanto astrazione, altre implementazioni sono possibili.

E FusionCache e una cache ibrida.

Qoooh &

¥ AsHybridCache()

FusionCache resta un progetto indipendente, a sé stante.
Questo non cambia.
Ma lavorare con un'astrazione condivisa e parte di .NET stesso puo avere valore.

Quindi FusionCache puo essere utilizzata anche come implementazione della nuova astrazione
HybridCache, il tutto mantenendo le funzionalita extra di FusionCache.

E tutto grazie a un piccolo adapter.

Come?

¥ AsHybridCache()

Cosl:

Nessuna modifica al codice necessaria, da nessuna parte.

¥ AsHybridCache()

Ricordate tutti quei (*)?
Spariti.

Utilizzando FusionCache come implementazione di HybridCache otteniamo:

- cache stampede: unificata + deterministica + sync/async

- controllo: controllo completo su L1/L2

- backplane: notifiche distribuite e istantanee multi-nodo

- cache sempre coerente: bye bye nodi fuori sync, incluso per Tagging

« cache multiple: possiamo usare Named Caches con Keyed Services

- extra feature: Fail-Safe, Eager Refresh, Factory Timeouts, Auto-Recovery, ecc

¥ AsHybridCache()

Riguardo al non determinismo, ora e cosi, sempre:;

Microsoft Visual Studio X =F

PARALLEL:

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

value found

-

e 0 0 60 60 60 O e e @

-

value found

¥ AsHybridCache()

Timeline:

% Nov 2024: rilascio astrazione HybridCache (con .NET 9)
% Gen 2025: rilascio FusionCache v2 (con HybridCache adapter)
% Mar 2025: rilascio implementazione HybridCache di default (Microsoft)

Prima implementazione production-ready al mondo &

v2.0.0

@jod‘y‘clonetti released this Jan 20

This is a world's first!

FusionCache is the FIRST production-ready implementation of : not just the

first 3rd party implementation, which it is, but the very first implementation AT ALL, including
Microsoft's own implementation which is not out yet.

Read below for more.

%" Quindi, hybrid caching?

Per passare al caching ibrido possiamo:

« usare FusionCache, direttamente
« usare l'astrazione HybridCache, con I'implementazione default di Microsoft (*)

« usare l'astrazione HybridCache, con I'implementazione FusionCache

Abbiamo diverse scelte, sfruttiamole al meglio.

Grazie!

github.com/jodydonetti
twitter.com/jodydonetti

linkedin.com/in/jody-donetti

Su Dometrain:

CACHING

IN .NET

GETTING STARTED

by Jody Donettl “* Dometrain

Feedback, please &

	Slide 1
	Slide 2: Jody Donetti
	Slide 3: Hybrid Caching: Dove Eravamo Rimasti
	Slide 4: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 5: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 6: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 7: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 8: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 9: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 10: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 11: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 12: 🔖 Hybrid Caching: Dove Eravamo Rimasti
	Slide 13: Tagging
	Slide 14: 🏷️ Tagging
	Slide 15: 🏷️ Tagging
	Slide 16: 🏷️ Tagging
	Slide 17: 🏷️ Tagging
	Slide 18: 🏷️ Tagging
	Slide 19: 🏷️ Tagging
	Slide 20: 🏷️ Tagging
	Slide 21: 🏷️ Tagging
	Slide 22: 🏷️ Tagging
	Slide 23: 🏷️ Tagging
	Slide 24: Named Caches (FusionCache)
	Slide 25: 📛 Named Caches
	Slide 26: 📛 Named Caches
	Slide 27: 📛 Named Caches
	Slide 28: 📛 Named Caches
	Slide 29: 📛 Named Caches
	Slide 30: 📛 Named Caches
	Slide 31: Problemi
	Slide 32: 🚨 Problemi
	Slide 33: 🚨 Problemi
	Slide 34: 🚨 Problemi
	Slide 35: Database: Errori
	Slide 36: 💣 Database: Errori
	Slide 37: 💣 Database: Errori
	Slide 38: 💣 Database: Errori
	Slide 39: 💣 Database: Errori
	Slide 40: Fail-Safe (FusionCache)
	Slide 41: 💣 Fail-Safe
	Slide 42: 💣 Fail-Safe: Senza
	Slide 43: 💣 Fail-Safe: Con
	Slide 44: 💣 Fail-Safe
	Slide 45: 💣 Fail-Safe
	Slide 46: 💣 Fail-Safe: Senza
	Slide 47: 💣 Fail-Safe: Con
	Slide 48: ❤️ Fail-Safe: Sidney Lumet
	Slide 49: Database: Rallentamenti
	Slide 50: 🐌 Database: Rallentamenti
	Slide 51: 🐌 Database: Rallentamenti
	Slide 52: 🐌 Database: Rallentamenti
	Slide 53: Eager Refresh (FusionCache)
	Slide 54: 🦅 Eager Refresh
	Slide 55: 🦅 Eager Refresh
	Slide 56: 🦅 Eager Refresh
	Slide 57: 🦅 Eager Refresh
	Slide 58: 🦅 Eager Refresh
	Slide 59: 🦅 Eager Refresh
	Slide 60: 🦅 Eager Refresh
	Slide 61: Factory Timeouts (FusionCache)
	Slide 62: ⏱️ Factory Timeouts
	Slide 63: ⏱️ Factory Timeouts
	Slide 64: ⏱️ Factory Timeouts
	Slide 65: ⏱️ Factory Timeouts
	Slide 66: ⏱️ Eager Refresh + Factory Timeouts: Senza
	Slide 67: ⏱️ Eager Refresh + Factory Timeouts: Con
	Slide 68: Distributed Parts: Problemi
	Slide 69: 💣 Distributed Parts: Problemi
	Slide 70: 💣 Distributed Parts: Problemi
	Slide 71: 💣 Distributed Parts: Problemi
	Slide 72: 💣 Distributed Parts: Problemi
	Slide 73: Auto-Recovery (FusionCache)
	Slide 74: ↩️ Auto-Recovery
	Slide 75: Observability
	Slide 76: 🔭 Observability
	Slide 77: 🔭 Observability
	Slide 78: 🔭 Observability
	Slide 79: 🔭 Observability
	Slide 80: 🔭 Observability
	Slide 81: 🔭 Observability
	Slide 82: 🔭 Observability
	Slide 83: 🔭 Observability
	Slide 84: 🔭 Observability
	Slide 85: 🔭 Observability
	Slide 86: 🔭 Observability
	Slide 87: HybridCache: Limitazioni E Problemi (fine 2025)
	Slide 88: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 89: Ⓜ️ HybridCache: no new()
	Slide 90: Ⓜ️ HybridCache: no controllo su L1/L2
	Slide 91: Ⓜ️ HybridCache: singola istanza
	Slide 92: Ⓜ️ HybridCache: solo async
	Slide 93: Ⓜ️ HybridCache: no read-only
	Slide 94: Ⓜ️ HybridCache: non deterministica
	Slide 95: Ⓜ️ HybridCache: non deterministica
	Slide 96: Ⓜ️ HybridCache: non deterministica
	Slide 97: Ⓜ️ HybridCache: non deterministica
	Slide 98: Ⓜ️ HybridCache: non deterministica
	Slide 99: Ⓜ️ HybridCache: non deterministica
	Slide 100: Ⓜ️ HybridCache: non deterministica
	Slide 101: Ⓜ️ HybridCache: non deterministica
	Slide 102: Ⓜ️ HybridCache: non deterministica
	Slide 103: Ⓜ️ HybridCache: non deterministica
	Slide 104: Ⓜ️ HybridCache: incoerente su più nodi
	Slide 105: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 106: AsHybridCache()
	Slide 107: 🦥 AsHybridCache()
	Slide 108: 🦥 AsHybridCache()
	Slide 109: 🦥 AsHybridCache()
	Slide 110: 🦥 AsHybridCache()
	Slide 111: 🦥 AsHybridCache()
	Slide 112: 🦥 AsHybridCache()
	Slide 113: 🦥 AsHybridCache()
	Slide 114: 🦥 AsHybridCache()
	Slide 115: Quindi, hybrid caching?
	Slide 116: 🚀 Quindi, hybrid caching?
	Slide 117: Grazie!
	Slide 118: Feedback, please 🙂

